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Memory allocation

First-touch policy

When a process requests memory from the OS

threads gets (unmapped) virtual address

page fault on first touch

OS allocates physical pages to NUMA node on which accessing
thread is running

Once a virtual address is mapped, this mapping persists until the page is
released to the OS.
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Memory allocation

Successive malloc/free operations

malloc: Thread A gets virtual page
and touches it

free: page may be released to the
allocators cache

malloc: Thread D gets this page
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Memory allocation

Successive malloc/free operations

malloc: Thread A gets virtual page
and touches it

free: page may be released to the
allocators cache

malloc: Thread D gets this page

Thread D got remote memory from the allo-
cator!
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MapReduce

MapReduce workflow

MapReduce stages

map: apply map-function to input

shuffle: merge partitions

reduce: apply reduce-function to all
kv-pairs with the same key

... ... ...

... ... ...

... ... ...

map

combine (opt)

shuffle

reduce

...

...

size of buffers unknown a priori

iterative MapReduce: output of one MR step is input for the next
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MapReduce

How to speed things up?

Memory allocators for SMPs (tbbmalloc)

provide fast concurrent allocations

Memory reuse (reuse)

reuse buffers for subsequent MapReduce iterations

Memory preallocation (prealloc)

allocate needed amount of memory for each buffer
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Evaluation
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MR-Search with various allocators. Speedup is relative to glibc.

Significant speedup if more than one blade is used.
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NUMA traffic and runtime with various allocators (127 Threads).

Traffic on NUMAlink traced with Performance Co-Pilot

TBB does not prevent remote memory
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Evaluation
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Summary

Summary

It is not that easy to write scalable code for large SMPs.

large variability of memory access costs on large SMPs

allocators for SMPs help to increase scalability

they do not prevent remote memory

programmer needs to keep track of memory location (if possible)
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